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1. Introduction

Theories beyond the standard model which include several new particles at the TeV scale

and a new discrete symmetry lead to cascade decays with interesting signatures at colliders.

At the same time, the discrete symmetry reduces the contributions of new particles to

electroweak observables, allowing the new particles to be light enough such that they can

be copiously produced not only at the LHC, but perhaps even at the Tevatron. Classic

examples of such theories include supersymmetric models with R-parity, universal extra

dimensions [1], and Little Higgs models with T -parity [2]. Typically, the cascade decays

in these models lead to observable events with up to four leptons and missing transverse

energy [3, 4].

In this paper we show that more spectacular events, with five or six leptons, or one

photon and several leptons, are predicted in the 6-dimensional standard model (6DSM).

This model [5], in which all standard model particles propagate in two universal extra
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dimensions compactified on the chiral square [6, 29, 28], is motivated by the prediction

based on anomaly cancellation that the number of fermion generations is a multiple of

three [7], and by the long proton lifetime enforced by a remnant of 6D Lorentz symmetry [8].

The larger number of leptons and the presence of photons is due to the existence of

‘spinless adjoint’ particles, the Kaluza-Klein (KK) modes of gauge bosons polarized along

extra dimensions. Compared to five-dimensional (5D) models where such fields become the

longitudinal components of the KK vector bosons, in six-dimensional (6D) gauge theories

there is an additional field for each KK vector boson, which represents a physical spin-0

particle transforming in the adjoint representation of the gauge group [5].

The 6DSM has a KK parity corresponding to reflections with respect to the center of

the chiral square. Its consequences are similar to the ones in the case of a single universal

extra dimension [9], where KK parity is the symmetry under reflections with respect to the

center of the compact dimension. It is well known that in the 5D case KK parity ensures

the stability of the lightest KK particle (LKP). Furthermore, loop corrections select the

KK mode of the hypercharge boson to be the LKP [10], and that is a viable dark matter

candidate [11]. The same is true in the 6DSM, with the additional twist that the LKP

in that case is a spinless adjoint. In fact, one-loop mass corrections in this model lift the

degeneracy of the modes at each KK level, making all spinless adjoints lighter than the

corresponding vector bosons [12].

Particles on the first KK level, having KK numbers (1,0), are odd under KK parity.

As a result, they may be produced only in pairs at colliders, and each of their cascade

decays produces an LKP, which is seen as missing transverse energy in the detector. The

goal of this paper is to determine the main signatures of (1,0) particles at hadron colliders.

Particles on the second level, which have KK numbers (1,1) and are even under KK parity,

lead to a completely different set of signatures, mainly involving resonances of top and

bottom quarks [5].

We review the 6DSM in section 2, and then proceed in section 3 to calculate decay

widths for (1, 0) modes. We analyze the production of these particles at the LHC and

Tevatron in section 4, and compute rates for events with leptons and photons. Several

comments regarding our results are given in section 5. Feynman rules for this model are

given in appendix A. Details of the calculations of one-loop 2-body and tree-level 3-body

decay widths for spinless adjoints and vector bosons can be found in appendices B and C,

respectively.

2. Two universal extra dimensions

We assume that all standard model fields propagate in two flat extra dimensions, of coor-

dinates x4 and x5, compactified on a square of side L = πR with adjacent sides identified

in pairs (see figure 1). This compactification predicts that the fermion zero modes are

chiral, and therefore may represent the observed quarks and leptons. Furthermore, this

‘chiral square’ is invariant under rotations by π about its center. The ensuing Z2 symmetry,

known as KK parity, implies that the lightest KK-odd particle is stable.
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Figure 1: Chiral square compactification (left) and level-1 KK function f
(1)
0 (x4, x

5) for standard

model fields (right).

Equality of the Lagrangian densities on adjacent sides of the square is achieved by

enforcing that bulk fields and their first derivatives vary smoothly across the boundary.

Applying these boundary conditions to solve the 6D equations of motion for these fields,

by separation of variables, we find that the dependence on x4 and x5 can be expressed in

terms of one of four complete and orthonormal sets of functions f
(j,k)
n with n = 0, 1, 2, 3,

where the KK numbers (j, k) are integers and j ≥ 1, k ≥ 0 or j = k = 0. All (j, k) modes

have tree-level mass
√

j2 + k2/R before electroweak symmetry breaking.

2.1 Interactions of the (1,0) modes

We are primarily interested in the phenomenology of the (1, 0) modes here. We loosely

refer to these as ‘level-1’ modes because they are the lightest nonzero KK modes. For

notational brevity we will label them using the superscript (1).

The level-1 KK modes belonging to a tower that includes a zero mode have a KK

function

f
(1)
0 (x4, x5) = cos

(x4

R

)

+ cos
(x5

R

)

, (2.1)

which is plotted in figure 1. This is the case for the KK modes of all spin-1 fields and

fermions of the same chirality as the observed quarks and leptons, as well as the Higgs

doublet. The spinless adjoint field, A
(1)
H , which is the uneaten combination of the extra-

dimensional polarizations of the 6D gauge field, is associated with a KK function which is

independent of x4,

f
(1)
H = −1

2

[

f
(1)
1 (x4, x5) − f

(1)
3 (x4, x5)

]

= − sin
x5

R
, (2.2)

while the longitudinal component of the vector KK modes is associated with a KK function

which is independent of x5:

f
(1)
G = − i

2

[

f
(1)
1 (x4, x5) + f

(1)
3 (x4, x5)

]

= sin
x4

R
. (2.3)
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KK modes of fermions come in vectorlike pairs with the component of 4D chirality opposite

to the corresponding standard model fermion having KK function f1 or f3, depending on

the 6D chirality.

Integrating over the extra dimensional coordinates gives the 4D effective Lagrangian,

which contains kinetic and interaction terms for all SM particles and their KK modes. We

limit ourselves to detailing in this section only the couplings of the standard model fields

with the level-1 KK modes; the latter are odd under KK parity and so only appear in pairs.

The general Lagrangian for all modes is derived in ref. [6, 29], while the couplings for all

fermion modes can be found in appendix B.

The SU(3)c gauge interactions include the following tree-level couplings between zero

modes and (1, 0) modes:

Lgauge ⊃ gsf
abc

[

G(1)a
µ

(

∂µGν(1)b−∂νGµ(1)b
)

Gc
ν−G(1)a

µ G(1)b
ν ∂µGνc+G

(1)a
H ∂µG

(1)b
H Gc

µ

]

−g2
s

2

[

fabdfaceG(1)b
µ Gµ(1)cGd

νG
νe +

(

fabcfade + fadcfabe
)

G(1)b
µ GµdG(1)c

ν Gνe
]

+
g2
s

2
fabcfadeG

(1)c
H G

(1)e
H Gb

µGµd , (2.4)

where gs is the QCD gauge coupling, fabc are the SU(3)c structure constants, and G
(1)
µ

and G
(1)
H are the level-1 vector and spinless adjoint KK modes of the gluon Gµ. We have

suppressed all superscripts for zero modes. There are also interactions of the quark modes

with the QCD vector and spinless modes:

Lmatter ⊃
∑

fermions

gsQ
(1)
± Ga

µT aγµQ
(1)
± + gs

[

Q
(1)
± G(1)a

µ T aγµPL
R
Q±−iQ

(1)
± G

(1)a
H T aPL

R
Q±+H.c.

]

,

(2.5)

where fermions with 6D chirality + contain left-handed zero modes, and fermions with 6D

chirality − contain right-handed zero modes. The SU(2)W and U(1)Y sectors are analogous,

with all the gauge self-couplings set to zero in the Abelian case. The Higgs and ghost terms

are given in ref. [6, 29].

2.2 Mass corrections

Computing radiative corrections in this theory involves taking sums over KK modes, or

momenta in the extra dimensions, which fourier transform to operators localized at the

corners of the chiral square, (0, 0), (πR, πR) and (0, πR) ∼ (πR, 0). The most general 4D

effective Lagrangian must therefore allow for these [12]:

Leff =

∫ L

0
dx4

∫ L

0
dx5

[

Lbulk +

(

δ(x4)δ(x5) + δ(L − x4)δ(L − x5)

)

L1 + δ(L − x5)L2

]

,

(2.6)

where L1 and L2 contain all localized operators. Note that KK parity ensures the equality

of the operators localized at (0, 0) and (L,L). Local operators break 6D Lorentz invariance

and hence give rise to mass corrections for KK particles. Such terms are important for

models of flat extra dimensions since they allow for the decays of higher modes into pairs of

– 4 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
6

lower ones, a process which would otherwise be on threshold at best due to the quantization

of KK mode masses. They also make for a more interesting phenomenology by lifting the

degeneracy of states at each level.

The localized terms contain contributions from ultraviolet physics as well as from

running down from the cut-off. Being unable to compute the former, we assume that

they are generically smaller than the logarithmically-enhanced one-loop terms which are

calculable (for further discussion see [12, 10]). Level-1 fermions acquire the following mass

corrections [5]:

δ(MQ+) =

(

16

3
g2
s + 3g2 +

1

9
g′2 +

5

8
λ2

Q+

)

l0
R

+
1

2
m2

qR ,

δ(MQ−) =

(

16

3
g2
s + 4g′2y2 +

10

8
λ2

Q−

)

l0
R

+
1

2
m2

qR ,

δ(ML+) =
(

3g2 + g′2
) l0

R
,

δ(ME−) =
g′2

4π2

l0
R

, (2.7)

where gs, g and g′ are the SU(3)c ×SU(2)W ×U(1)Y gauge couplings, λQ± are the Yukawa

couplings of Q± to the Higgs doublet, and l0 is a common loop factor,

l0 =
1

16π2
ln (ΛR)2 . (2.8)

An estimate of the cutoff of the effective theory, based on naive dimensional analysis, gives

Λ ≈ 10/R [5]. The terms linear in R shown in eq. (2.7) are small corrections to tree-level

masses due to electroweak symmetry breaking.

The (1,0) vector bosons also receive radiative corrections to their masses,

δM
G

(1)
µ

= 4g2
s

l0
R

,

δM
W

(1)
µ

=
123

24
g2 l0

R
,

δM
B

(1)
µ

= −165

24
g′2

l0
R

, (2.9)

while only the spinless adjoints in the electroweak sector have mass corrections:

δM
G

(1)
H

= 0

δM
W

(1)
H

= −51

8
g2 l0

R
+

M2
W R

2
,

δM
B

(1)
H

= −307

8
g′2

l0
R

. (2.10)

The above mass shifts include negative contributions from fermions in loops, allowing for

overall negative corrections to masses in this sector. This is especially important when
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400.

450.

500.

550.

600.

650.

700.

M
[G

eV
]

G
(1)
µ

W
(1)
µ

B
(1)
µ

G
(1)
H

W
(1)
H

B
(1)
H

Q
3(1)
+

Q
(1)
+

D
(1)
−

T
(1)
−

U
(1)
−

L
(1)
+

E
(1)
−

1/R = 500 GeV

Table 1: Masses of the (1,0) particles in 1/R units (left). The (1,0) Higgs particles are not included

here because their masses are quadratically sensitive to the cutoff scale. The right-hand panel shows

the spectrum for 1/R = 0.5TeV.

there are no self-interactions to compete with the fermion interactions, as is the case for

the hypercharge bosons.

We ignore mixing effects between the level-1 weak and hypercharge bosons since these

are suppressed by powers of MW R, and are small for both gauge bosons and spinless

adjoints. In fact, the mixing angles are smaller than those in the case of one universal

extra dimension [10] by around 10% because of larger mass splittings between KK bosons.

The masses of the (1,0) particles are given in table 1 in units of 1/R. The mass shifts

are evaluated for gauge couplings gs = 1.16, g = 0.65 and g′ = 0.36, which are the values

obtained using the standard model one-loop running up to the scale 1/R = 500 GeV, We

will use the masses from table 1 throughout the paper, ignoring further running of the gauge

couplings above 500 GeV (note that the standard model running of the gauge couplings

between 500 GeV and 1TeV results in only a 3% change in gs and negligible changes in

g and g′; however, above ∼ 1/R the running is accelerated by the presence of the level-1

modes).

The KK modes of the Higgs doublet have mass-squared shifts which are quadratically

sensitive to the cutoff scale Λ [10]. Hence, the masses of the (1,0) Higgs scalars may be

treated as free parameters (determined by the underlying theory above Λ, which is not

specified in our framework). Furthermore, additional structures such as the Twin Higgs

mechanism [13] may be used to cancel the quadratic divergences in models with universal

extra dimensions [14], potentially affecting the (1,0) Higgs sector. We assume here that the

– 6 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
6

(1,0) Higgs particles are heavier than 1/R. In that case, the hadron collider phenomenology

is mostly independent of the exact (1,0) Higgs masses.

2.3 Loop-induced bosonic operators

In addition to lifting the degeneracy of the (1, 0) masses, loop corrections also contribute

to the following dimension-5 operators that are of particular interest for computing the

branching fractions of the (1, 0) bosons:

−R

4

(

CBǫµναβFµνB
(1)
αβ B

(1)
H + CGǫµναβGµνB

(1)
αβ G

(1)
H

)

, (2.11)

where Fµν and Gµν are the field strengths of the photon and gluon, respectively, B
(1)
αβ is the

field strength of the (1, 0) hypercharge vector boson B
(1)
α , and B

(1)
H is the U(1)Y spinless

adjoint. These operators account for the only significant 2-body decay channels open to the

level-1 KK modes G
(1)
H and B

(1)
µ . The analogous operator with the photon replaced by the

Z boson is less relevant because the corresponding decay width is phase-space suppressed.

The coefficients of the above dimension-5 operators are computed in appendix B, with the

result:

CB =
g′2e

8π2R

1

M2

B
(1)
ν

− M2

B
(1)
H

∑

F

σF

(YF

2

)2
QFEF (2.12)

where σF = ±1 for a 6D fermion F of chirality ±, QF is the electric charge, YF is the

hypercharge normalized to be twice the electric charge for SU(2)W singlets and EF is a

function of the masses of B
(1)
H , B

(1)
ν , and of the (1,0) and (1,1) fermions given in eq. (B.10).

CG is given by an analogous expression, but it is suppressed by the small mass difference

between the initial- and final-state (1, 0) bosons.

One might also naively expect higher-dimension operators of the form

Gµν∂µB
(1)
H ∂νG

(1)
H + Zµν∂µB

(1)
H ∂νW

(1)3
H +

(

W+
µν∂

µB
(1)
H ∂νW

(1)−
H + H.c.

)

, (2.13)

to be generated, where W
(1)
H is the level-1 SU(2)W spinless adjoint and Wµν and Zµν are

the standard model field strengths for the W and Z bosons. However, the first of these

terms is identically zero as can be seen after integrating by parts and using the gluon field

equation. By the same method one can see that the coefficients of the last two terms are

small, being proportional to (MW R)2, and furthermore the resulting decay widths for W
(1)
H

are also phase-space suppressed.

3. Decays of the level-1 particles

KK parity allows any (1,0) particle to decay only into a lighter (1,0) particle and one or more

standard model particles. The lightest (1,0) particle is stable. In this section we compute

the branching fractions of the (1,0) particles assuming that the generic features of the

‘one-loop’ mass spectrum, shown in table 1, are not modified by higher-order corrections.

– 7 –
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3.1 Color-singlet (1, 0) particles

The W
(1)
H boson (the spinless adjoint of SU(2)W ) is the next-to-lightest (1,0) particle, and

therefore can decay only into a B
(1)
H plus standard model particles. The dominant decay

mode of its electrically neutral component is the 3-body decay W
(1)3
H → B

(1)
H ll̄, where l are

leptons. The width for this decay, computed in appendix C, is given by

Γ
(

W
(1)3
H → B

(1)
H e+e−

)

=
α2 M

W
(1)
H

128π cos2θw sin2θw

I+

(

M
W

(1)
H

,M
B

(1)
H

,M
L

(1)
+

)

, (3.1)

and is the same for any lepton pair. The dimensionless function I+ contains phase space

integrals for the decay and is defined in eq. (C.8). Expanding this to leading order in the

mass difference M
W

(1)
H

− M
B

(1)
H

, which is accurate to about 25% for the mass spectrum in

table 1 [see eq. (C.18) in appendix C], we find that the width of the W
(1)3
H decay into B

(1)
H

plus quarks has a simple expression in terms of the decay width into B
(1)
H plus leptons:

Γ
(

W
(1)3
H → B

(1)
H qq

)

≈ 1

3





M2

L
(1)
+

− M2

W
(1)
H

M2

Q
(1)
+

− M2

W
(1)
H





4

Γ
(

W
(1)
H → B

(1)
H e+e−

)

, (3.2)

where we have not summed over quark flavors. Given that W
(1)
H is closer to L

(1)
+ in mass

than to Q
(1)
+ , it follows that the decay into quarks is highly suppressed. The ensuing

branching fractions for the W
(1) 3
H → B

(1)
H transition are approximately 1/6 for each of the

e+e−, µ+µ− and τ+τ− final states, 1/2 for νν, and 0.5% for the sum of all quark-antiquark

pairs.

The electrically charged spinless adjoints of SU(2)W , W
(1)±
H , decay with a branching

fraction of nearly 1/3 into each of the e±νB
(1)
H , µ±νB

(1)
H and τ±νB

(1)
H final states, while

the branching fraction into qq′B
(1)
H is again negligible.

The spin-1 boson B
(1)
µ may decay only into a B

(1)
H or W

(1)
H and standard model parti-

cles. An important tree-level decay is into right-handed leptons and a B
(1)
H , with a width:

Γ
(

B(1)
µ → B

(1)
H e+

Re−R

)

=

α2M2

E
(1)
−

24π cos4θw M
B

(1)
µ

I−
(

M
B

(1)
µ

,M
B

(1)
H

,M
E

(1)
−

)

, (3.3)

where I− is another phase space integral defined in eq. (C.8). The width into left-handed

leptons,

Γ
(

B(1)
µ → B

(1)
H e+

Le−L

)

=

α2M2

L
(1)
+

384π cos4θw M
B

(1)
µ

I−
(

M
B

(1)
µ

,M
B

(1)
H

,M
L

(1)
+

)

, (3.4)

is suppressed due to the smaller hypercharge and larger mass of the (1,0) fermion, which

is L
(1)
+ in this case. For the same reasons, the B

(1)
µ decay into a B

(1)
H and qq pairs has a

small decay width. B
(1)
µ decays to W

(1)
H plus fermion pairs are highly suppressed due to the

– 8 –
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dependence on the 7th power of the small difference between initial and final (1,0) masses

[see eqs. (C.12) and (C.18) in appendix C].

Besides these tree-level 3-body decays, B
(1)
µ also has 2-body decays via the dimension-5

operator shown in eq. (2.11), which is induced at one loop (see appendix B). The decay

width is given by

Γ
(

B(1)
µ → B

(1)
H γ

)

=
α3

96π2 cos4θw

1

M
B

(1)
µ



1 −
M2

B
(1)
H

M2

B
(1)
µ





(

∑

F

σF

(

YF

2

)

QF EF

)2

, (3.5)

where the sum over F includes all quarks and leptons, σF is +1 for SU(2)W doublets and

−1 for SU(2)W singlets, QF is the electric charge, YF is the hypercharge normalized to be

twice the electric charge for SU(2)W singlets, and EF is given in eq. (B.10) and depends

only on the masses of B
(1)
H , B

(1)
ν , and of the (1,0) and (1,1) fermions. Using the values for

the standard model gauge couplings given at the end of section 2.2, i.e., α = 1/127 and

sin2θw = 0.235, we find the following branching fractions for B
(1)
µ :

Br
(

B(1)
µ → B

(1)
H γ

)

≡ bBγ ≈ 34.0% , Br
(

B(1)
µ → B

(1)
H e+e−

)

≡ bBe ≈ 21.3% . (3.6)

The branching fractions into e+e−B
(1)
H , µ+µ−B

(1)
H and τ+τ−B

(1)
H are equal. The fact that

the tree-level 3-body decay and the one-loop 2-body decay have comparable branching

fractions in the case of B
(1)
µ is an accidental consequence of the mass spectrum given in

table 1. The B
(1)
µ decays into B

(1)
H plus neutrinos or quarks have small branching fractions

(1.4% and 0.6%, respectively) which may be safely ignored in what follows.

The (1,0) leptons can decay into (1,0) modes of the electroweak gauge bosons or spinless

adjoints, and a standard model lepton. The decay widths of the SU(2)W -doublet (1,0)

leptons, L
(1)
+ ≡ (N

(1)
+ , E

(1)
+ ), to neutral (1,0) particles are given at tree level by:

Γ
(

L
(1)
+ → W

(1)3
H lL

)

=
α

32 sin2θw

ML(1)



1 −
M2

W
(1)
H

M2
L(1)





2

,

Γ
(

L
(1)
+ → B(1)

µ lL

)

=
α

16 cos2θw
ML(1)



1 −
M2

B
(1)
µ

M2
L(1)





2 

1 +
M2

L(1)

2M2

B
(1)
µ



 ,

Γ
(

L
(1)
+ → B

(1)
H lL

)

=
α

32 cos2θw
ML(1)



1 −
M2

B
(1)
H

M2
L(1)





2

, (3.7)

where lL is the corresponding standard model weak doublet lepton. The decays to charged

(1,0) particles, E
(1)
+ → W

(1)−
H νL and N

(1)
+ → W

(1)−
H e+

L , have a width twice as large as the
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Final-state W
(1)3
µ → . . . → B

(1)
H Final-state W

(1)+
µ → . . . → B

(1)
H

e, µ, γ Branching fractions % e, µ, γ Branching fractions %

X 2
3(bl1 + bl2 + bl3bBe) 30.4 X 1

3(bl1 + 2bl2 + bl3bBe) 23.1

(e+ + e−)X 4
9bl2 10.5 e+ X 1

3(bl1 + 2bl2 + bl3bBe) 23.1

(e+µ−+ e−µ+)X 4
9bl2 10.5 e+e− X 1

6(bl2 + 2bl3bBe) 4.6

e+e− X bl1
6 + 4

9bl2 + 5
6bl3bBe 15.5 e+e−e+X 1

6(bl2 + 2bl3bBe) 4.6

e+e−e+e− 1
36(bl2 + 6bl3bBe) 1.0 e+e−µ+X 1

6(bl2 + 2bl3bBe) 4.6

e+e−µ+µ− 1
18(bl2 + 6bl3bBe) 2.0 γ X 1

3bl3bBγ 1.1

γ X 2
3bl3bBγ 2.1 γ e+ X 1

3bl3bBγ 1.1

γ e+e− X 1
6bl3bBγ 0.5

Table 2: Branching fractions for the complete cascade decays of W
(1)3
µ and W

(1)+
µ . X stands

for a number of neutrinos or taus. The branching fractions involving more muons than electrons

(not shown) are equal to the analogous ones involving more electrons than muons. The branching

fractions of W
(1)−
µ are the same as for W

(1)+
µ except for flipping the electric charges of the final

state leptons. The branching fractions for ‘one-step’ decays, bl1, bl2, bl3 and bBe, bBγ , are defined

in eqs. (3.8) and (3.6).

L
(1)
+ → W

(1)3
H lL decay width. The L

(1)
+ branching fractions are given by:

Br
[

(N
(1)
+ , E

(1)
+ ) → B

(1)
H (νL, eL)

]

≡ bl1 ≈ 20.1% .

1

2
Br

[

(N
(1)
+ , E

(1)
+ ) → W

(1)+
H (eL, νL)

]

= Br
[

(N
(1)
+ , E

(1)
+ ) → W

(1)3
H (νL, eL)

]

≡ bl2 ≈ 23.5% ,

Br
[

(N
(1)
+ , E

(1)
+ ) → B(1)

µ (νL, eL)
]

≡ bl3 ≈ 9.3% . (3.8)

As opposed to the three spinless adjoints and B
(1)
µ which at tree level have only 3-body

decays, the W
(1)
µ particles are heavier than the (1,0) leptons and therefore decay with a

branching fraction of almost 100% into one (1,0) lepton doublet and the corresponding

standard model lepton doublet. Putting together the branching fractions for various decays

of the electroweak (1,0) bosons, we find the branching fractions for the complete cascade

decays of W
(1)3
µ shown in table 2.

3.2 Colored (1,0) particles

At tree level, the (1,0) spinless adjoint of SU(3)c has only 3-body decays into a quark-

antiquark pair and one of the electroweak (1,0) bosons. The decay widths are derived in

– 10 –
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appendix C, and take the following form:

Γ
(

G
(1)
H → B

(1)
H uRuR

)

=
y2

uR
ααs

64π cos2θw
M

G
(1)
H

I+

(

M
G

(1)
H

,M
B

(1)
H

,M
U

(1)
−

)

, (3.9)

Γ
(

G
(1)
H → B(1)

µ uRuR

)

≈
y2

uR
ααs

140π cos2θw
M

G
(1)
H

M2

U
(1)
−

M2

B
(1)
µ

(

M
G

(1)
H

− M
B

(1)
µ

)7

(M2

U
(1)
−

− M2

G
(1)
H

)4
, (3.10)

for hypercharge (1,0) bosons in the final state, and

Γ
(

G
(1)
H → W

(1)3
H uLuL

)

≈ ααs

420π sin2θw

M2

G
(1)
H

(

M
G

(1)
H

− M
W

(1)
H

)7

(M2

Q
(1)
+

− M2

G
(1)
H

)4
, (3.11)

Γ
(

G
(1)
H → W

(1)+
H dLuL

)

= Γ
(

G
(1)
H → W

(1)−
H uLdL

)

= 2Γ
(

G
(1)
H → W

(1)3
H uLuL

)

,

for SU(2)W (1,0) bosons. Note that we have expanded the decay widths to leading order

in the mass difference of G
(1)
H and the electroweak (1,0) boson [see eq. (C.18)] in the case

of GH → Bµ and GH → WH transitions, but not for GH → BH where the mass difference

is larger and the expansion does not provide a good approximation.

G
(1)
H has also a two-body decay into B

(1)
µ and a gluon, via a dimension-5 operator

shown in eq. (2.11), which is induced at one loop. However, the width for this decay is

highly suppressed because G
(1)
H and B

(1)
µ are almost degenerate.

After summing over all quark flavors, we find that the dominant decay mode of G
(1)
H

is into B
(1)
H qq, with a total branching fraction of bg1 ≈ 96.5%. The sum over all branching

fractions of G
(1)
H into W

(1)+
H or W

(1)−
H plus a quark-antiquark pair is b′g2 ≈ 2.3%. The

branching fraction for G
(1)
H → W

(1)3
H qq is bg2 ≈ 1.2%, while the decay into B

(1)
µ is highly

suppressed due to the very small mass difference involved in that case. The branching

fractions quoted here correspond to 1/R = 500 GeV. For different values of 1/R, the

branching fractions of G
(1)
H change slightly due to the dependence of M

T
(1)
±

R on 1/R shown

in table 1. For the coupling constants we use αs = 0.107, α = 1/127 and sin2 θw = 0.235,

which are the standard model values at 500 GeV.

The (1,0) quarks can decay into both vector and spinless modes. The largest decay

width is into a G
(1)
H and a standard model quark:

Γ
(

Q(1)→ G
(1)
H q

)

=
αs

6
MQ(1)



1 −
M2

G
(1)
H

M2
Q(1)





2

. (3.12)

Ignoring the standard model quark mass, the decay width for the latter is

Γ
(

Q
(1)
+ → W

(1)3
H qL

)

=
α

32 sin2θw

M
Q

(1)
+



1 −
M2

W
(1)
H

M2
Q(1)





2

, (3.13)
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V (1) Br
(

U
(1)
+ → qLV (1)

)

V (1) Br
(

U
(1)
− → uRV (1)

)

Br
(

D
(1)
− → dRV (1)

)

G
(1)
H bq3 ≈ 63.2% G

(1)
H bu3 ≈ 82.1% bd3 ≈ 94.8%

W
(1)3
µ ; W

(1)+
µ bq2 ≈ 6.4% ; 2bq2 B

(1)
µ bu2 ≈ 11.5% bd2 ≈ 3.3%

W
(1)3
H ; W

(1)+
H bq1 ≈ 5.6% ; 2bq1 B

(1)
H bu1 ≈ 6.4% bd1 ≈ 1.9%

B
(1)
µ bq0 ≈ 0.55%

Table 3: Branching fractions of first and second generation (1,0) quarks, in percentage. D
(1)
+ have

the same branching fractions as U
(1)
+ except for a flip of the electric charge of the (1,0) bosons. The

U
(1)
+ decay into a B

(1)
H and a quark is not shown because it is too small to be relevant.

and is twice as large in the case of W
(1)±
H . The decays of (1,0) quarks into an SU(2)W (1,0)

vector boson and a standard model quark have a width

Γ
(

Q
(1)
+ → W (1)3

µ qL

)

=





M2

Q
(1)
+

− M2

W
(1)
µ

M2

Q
(1)
+

− M2

W
(1)
H





2 

2 +

M2

Q
(1)
+

M2

W
(1)
µ



 Γ
(

Q
(1)
+ → W

(1)3
H qL

)

. (3.14)

The width is twice as large for Q
(1)
+ → W

(1)±
µ qL.

All (1,0) quarks may also decay into (1,0) hypercharge bosons with widths

Γ
(

Q(1)→ B
(1)
H q

)

=
Y 2

q α

32 cos2θw

MQ(1)



1 −
M2

B
(1)
H

M2
Q(1)





2

,

Γ
(

Q(1)→ B(1)
µ q

)

=





M2
Q(1) − M2

B
(1)
µ

M2
Q(1) − M2

B
(1)
H





2 

2 +
M2

Q(1)

M2

B
(1)
µ



 Γ
(

Q(1)→ B
(1)
H q

)

, (3.15)

where Yq is the hypercharge of the quark q, normalized to be 1/3 for SU(2)W doublets.

The branching fractions of the (1,0) quarks of the first and second generations are shown

in table 3.

The B
(1)
− quark has the same branching fractions as D

(1)
− , while those of the Q

(1)3
+ =

(T
(1)
+ , B

(1)
+ ) quarks are more sensitive to 1/R, as shown in figure 2, because of the large top

quark mass. Finally, the KK mode of the SU(2)W -singlet top quark, T
(1)
− , has branching

fractions highly sensitive to the mass of (1,0) Higgs particles, with the decay into bH(1)+

dominating over t G
(1)
H if H(1)+ is light. Because of this fact, and also because of their

small production cross section, third generation fermions do not result in many multi-

lepton events. Hence we will not give an expression for their branching fractions here.
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Figure 2: Branching fractions for the SU(2)W -doublet (1,0) quarks of the third generation, as-

suming that the (1,0) Higgs particles have a mass MH(1) = 1.05/R.

The (1,0) vector gluon decays into a standard model quark and a (1,0) quark. The

width in the case of SU(2)W -singlet down-type quarks is given by

Γ



G(1)
µ →

∑

i=1,2,3

D
(1)i
−R

di
R



 =
αs

2
M

G
(1)
µ



1 −
M2

D
(1)
−

M2

G
(1)
µ





2 

1 +

M2

D
(1)
−

2M2

G
(1)
µ



 . (3.16)

The widths into all other (1,0) quarks except for the top have similar forms. For

1/R ∼< 1.3 TeV the decays of the (1,0) vector gluon into tLT
(1)
+L

or tRT
(1)
−R

have a highly

suppressed phase space, and the branching fractions of G
(1)
µ into a quark plus Q

(1)i
+L

, U
(1)i
−R

,

or D
(1)i
−R

, summed over the index i which labels the three generations, are given by 36.7%,

24.6% and 38.7%, respectively.

For the purpose of analyzing the capability of the LHC to test this model, we need to

compute the branching fractions of the complete cascade decays of the (1,0) quarks and

gluons into the LKP and a number of charged leptons or photons. It is useful to compute

first the sums over branching fractions of the cascade decays that do not involve any e±,

µ±, or γ for G
(1)
H ,

bgX = bg1 +
2

3
bg2 +

b′g2

3
, (3.17)

and for U
(1)
− , D

(1)
− , Q

(1)
+ , respectively:

buX = bu1 + bu2 bBe + bu3 bgX ,

bdX = bd1 + bd2 bBe + bd3 bgX ,

bqX = bBebq0 +
4

3
bq1 +

2

3
(2bl1 + 3bl2 + 2bl3bBe) bq2 + bq3 bgX . (3.18)

The right-hand sides of the above equations are sums over separate cascade decays, whose

branching fractions are written as products of ‘one-step’ decays. For example, in the case

of bqX the first term comes from the Q
(1)
+ → W

(1)
H → B

(1)
H cascade, the second term comes

– 13 –
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Final-state e, µ, γ G
(1)
H → . . . → B

(1)
H U

(1)
− → . . . → B

(1)
H D

(1)
− → . . . → B

(1)
H

X bgX ≈ 98.0% buX ≈ 89.4% bdX ≈ 95.5%

e+ (µ+)X 1
6b′g2 ≈ 0.38% 1

6bu3b
′
g2 ≈ 0.31% 1

6bd3b
′
g2 ≈ 0.36%

e− (µ−)X 1
6b′g2 ≈ 0.38% 1

6bu3b
′
g2 ≈ 0.31% 1

6bd3b
′
g2 ≈ 0.36%

e+e− (µ+µ−)X 1
6bg2 ≈ 0.21% bu2bBe + bu3

6 bg2 ≈ 2.6% bd2bBe + bd3
6 bg2 ≈ 0.90%

γ X ≈ 0 bu2bBγ ≈ 3.9% bd2bBγ ≈ 1.1%

Table 4: Branching fractions for the complete cascade decays of G
(1)
H , U

(1)
− and D

(1)
− , with 0,1 or

2 charged leptons in the final state. X stands for a number of standard model fermions other than

e± and µ±. The branching fractions for U
(1)

− and D
(1)

− are the same as for U
(1)
− and D

(1)
− .

from the sum over Q
(1)
+ → W

(1)
µ → · · · → B

(1)
H cascades, and the last term comes from the

Q
(1)
+ → G

(1)
H → B

(1)
H cascade.

The Q
(1)
− and G

(1)
H cascade decays lead to at most two charged leptons, with small

branching fractions, as shown in table 4. By contrast, Q
(1)
+ have larger branching fractions

for decays involving charged leptons, and include up to four charged leptons (see table 5).

However, the cascade decay with the largest branching fraction to a photon is that of U
(1)
− .

4. Signatures of (1,0) particles at hadron colliders

In this section we discuss the prospects for discovery of (1,0) particles at the LHC and the

Tevatron. As shown in the previous section, a large number of leptons arises in the decays

of W
(1)
µ and other (1,0) bosons, while photons arise in the decay of the B

(1)
µ vector boson.

We focus on computing the production cross sections of colored particles and the number

of events with leptons and photons resulting from their decays. We will also include direct

production of W
(1)
µ in our analysis although this turns out to have a rather small effect.

4.1 Pair production of level-1 particles

We discuss the production of (1,0) particles in order of importance for the lepton + photon

signals under consideration. This is more complicated than level-1 production in the case

of one universal extra dimension [15] because of the G
(1)
H spinless adjoint, which is not

present in the 5D theory, and appears in the final state as well as in s- and t- channel

exchanges.

We begin with the SU(2)W -doublet quarks Q
(1)
+ , because a large fraction of their

cascade decays give rise to charged leptons (see section 3). In addition, since it is lighter

than the (1,0) vector gluon, and because of its high multiplicity, we expect Q
(1)
+ production

to be the dominant source of multi-lepton signals. We concentrate here on production
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Final-state e, µ, γ U
(1)
+ → . . . → B

(1)
H

X bqX ≈ 74.5%

e+ (µ+)X 2
3bq1 + 2

9 (3bl1 + 7bl2 + 3bl3bBe) bq2 + 1
6b′g2bq3 ≈ 7.3%

e− (µ−)X 2
9bl2bq2 + 1

6b′g2bq3 ≈ 0.58%

e+e− (µ+µ−)X bBebq0 +
bq1
6 + 1

18(3bl1 + 14bl2 + 27bl3bBe)bq2 +
bg2
6 bq3 ≈ 2.6%

e+µ− (e−µ+)X 2
9bl2bq2 ≈ 0.33%

e+e+e− (µ+µ+µ−)X 1
3(bl2 + 2bl3bBe)bq2 ≈ 0.58%

µ+e+e− (e+µ+µ−)X 1
3(bl2 + 2bl3bBe)bq2 ≈ 0.58%

e+e−e+e− (µ+µ−µ+µ−)X 1
36(bl2 + 6bl3bBe)bq2 ≈ 0.063%

e+e−µ+µ− X 1
18(bl2 + 6bl3bBe)bq2 ≈ 0.13%

γ X bBγbq0 + 4
3bl3bBγbq2 ≈ 0.38%

γ e+ (γµ+)X 2
3bl3bBγbq2 ≈ 0.13%

γ e+e− (γµ+µ−)X 1
6bl3bBγbq2 ≈ 0.033%

Table 5: Branching fractions for the complete cascade decays of U
(1)
+ with up to four charged

leptons or photons in the final state. X stands for a number of standard model fermions other than

e± and µ±. D
(1)

+ has the same branching fractions as U
(1)
+ , while the branching fractions of D

(1)
+

and U
(1)

+ are given by flipping the lepton charges in the first column. The (1,0) top-quark doublet

has branching fractions which are highly dependent on 1/R, and are not shown here.

mechanisms at the LHC, while in section 4.3 we adapt this discussion to the case of pp̄

collisions at the Tevatron.

Given that there are more quarks than anti-quarks involved in proton-proton collisions,

we first discuss quark-initiated pair production, qq → Q
(1)
± Q

(1)
± , which is mediated by

G
(1)
µ and G

(1)
H exchange in the t channel, as shown in figure 3. Two (1,0) quarks of

different flavors (Q
(1)
± Q′(1)

± ), and an SU(2)W doublet-singlet pair (Q
(1)
+ Q′(1)

− ) are produced

in a similar way.

For low 1/R, the quark anti-quark and gluon initiated production mechanisms are also

important. Production from a quark anti-quark pair, qq̄′ → Q
(1)
± Q̄′(1)

± and qq̄′ → Q
(1)
± Q̄′(1)

∓ ,

is similar to the process shown in figure 3 with a fermion line replaced by an anti-fermion

line. When quarks in the initial state have a different flavor than the (1,0) quarks in the final

state, q′q̄′ → Q
(1)
± Q̄

(1)
± , a single tree-level diagram with a gluon exchange in the s channel

contributes, as shown in figure 4. The processes qq̄ → Q
(1)
± Q̄

(1)
± (for which the initial and
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+

Q
(1)
±

Q
(1)
±

Q
(1)
±

Q
(1)
±

q

q

q

q

G
(1)
µ G

(1)
H

Figure 3: Diagrams for Q
(1)
± Q

(1)
± production from quark-quark (qq) initial state.

Q̄
(1)
±

Q
(1)
±

q′

q̄′

g

Figure 4: Q
(1)
± Q

(1)

± production from q′q̄′ initial state.

+ +

g

g

g

g

g

g
g

Q̄
(1)
±

Q
(1)
±

Q̄
(1)
±

Q
(1)
±

Q̄
(1)
±

Q
(1)
±

Q
(1)
± Q

(1)
±

Figure 5: Diagrams for Q
(1)
± Q̄

(1)
± production from gluon-gluon (gg) initial state.

final states have same flavors) get contributions from the two diagrams in figure 3 with one

of the fermion lines replaced by an anti-fermion line, and also from the diagram of figure 4

with q′ replaced by q.

Q
(1)
± Q̄

(1)
± can also be produced from two gluons in the initial state, as shown in fig-

ure 5. This production channel becomes increasingly important for smaller (1,0) quark

mass (smaller 1/R) due to the larger gluon flux in the parton distribution.

Since the SU(3)c (1,0) bosons, G
(1)
µ and G

(1)
H , decay to fewer leptons than Q

(1)
+ , we

will next consider their associated production with Q
(1)
+ . The process qg → Q

(1)
± G

(1)
H is

shown in figure 6. Diagrams with a (1,0) vector gluon in the final state can be obtained

by replacing G
(1)
H by G

(1)
µ . Similar diagrams, but with G

(1)
H replaced by W

(1)
µ and an

appropriate flip between the up-type and down-type quarks, contribute to qg → Q
(1)
± W

(1)
µ

associated production.

G
(1)
H pair production is a rather meager source of leptons or photons, but for the sake

of completeness we include here its diagrams: quark initiated production qq̄ → G
(1)
H G

(1)
H ,

and gluon initiated production gg → G
(1)
H G

(1)
H are shown in figures 7 and 8, respectively.
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+ +

g

q

g

q

g

q
q

G
(1)
H

Q
(1)
±

Q
(1)
±

G
(1)
H

G
(1)
H

Q
(1)
±

Q
(1)
± G

(1)
H

Figure 6: Diagrams for G
(1)
H Q

(1)
± production from quark-gluon initial state.

+

q̄

q

q̄

q
g

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

Q
(1)
±

Figure 7: Diagrams for G
(1)
H G

(1)
H production from qq̄ ( u-channel diagram is not shown).

+ +

g

g

g

g

g

g
g

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
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Figure 8: Diagrams for G
(1)
H G

(1)
H production from gg (a u-channel diagram is not shown).

G
(1)
µ pair production proceeds through the same diagrams with all G

(1)
H lines replaced by

G
(1)
µ ones.

G
(1)
µ G

(1)
H associated production, qq̄ → G

(1)
H G

(1)
µ , proceeds through four diagrams with

Q
(1)
+ and Q

(1)
− in the t and u channels, similar to the second diagram in figure 7. There is

no contribution from the s channel because the coupling G
(1)
H gµG

(1)
µ does not exist at tree

level due to gauge invariance.

Finally we consider associated production of G
(1)
µ or G

(1)
H with an SU(2)W vector boson,

W
(1)
µ , as shown in figure 9 (with G

(1)
H in the final state replaced by G

(1)
µ for qq̄′ → G

(1)
µ W

(1)
µ ).

For W
(1)3
µ in the final state, the initial state and the (1,0) quarks are all of the same type.

Associated production with hypercharge bosons, B
(1)
µ or B

(1)
H , as well as with the SU(2)W

spinless adjoints W
(1)
H are very small and will be neglected; we will also ignore production

of (1,0) Higgs particles since their phenomenology is highly model-dependent.

Given that there are many diagrams that need to be taken into account, we have

implemented the 6DSM detailed in section 2 in CalcHEP [16, 17], a tree-level Feynman

diagram calculator (for a description of our CalcHEP files, see [18]). Consequently it is

rather straightforward to compute production cross sections for (1,0) particles at various
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q̄′

q

q̄′

q

W
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µ

G
(1)
H

G
(1)
H

W
(1)+
µ

Q
(1)
+ Q′(1)

+

Figure 9: Diagrams for W
(1)+
µ G

(1)
H production from qq̄′.

colliders. As a cross-check we have compared the CalcHEP output for all 2- and 3-body

decay widths with the corresponding analytic expressions in section 3. We also checked

cross sections for selected production channels using MadGraph/MadEvent [19, 20].

The cross sections at the LHC (
√

s = 14 TeV) are graphed as a function of 1/R in

figure 10, and have been summed over various channels. We assume five partonic quark

flavors in the proton along with the gluon, and ignore electroweak production of colored

particles. We used the CTEQ6L parton distributions [21], and chose the scale of the strong

coupling constant αs to be equal to the parton-level center of mass energy.

Q
(1)
+ Q

(1)
+ production, which is responsible for most of the multi-lepton events (as shown

later in section 4.2), is dominated by (1,0) quarks of the first 2 generations (88% at 1/R =

500 GeV, increasing to 98% at 1/R = 1 TeV). The gluon-gluon initial state contributes

only ∼10% (3%) of the total Q
(1)
+ Q

(1)
+ cross section at 1/R = 500 GeV (1 TeV), since firstly

the gluon flux in the proton at this mass scale is small, and secondly, there are a large

number of subprocesses with qq or qq̄ initial states. G
(1)
H production is different in that

the dominant contribution to this process comes from the gluon initial state, with valence

quarks making up the remainder.

The production cross sections of the SU(2)W doublet and singlet (1,0) quarks, Q
(1)
+

and Q
(1)
− , are almost equal, since they are produced in exactly the same way (see figures 3–

6). The slightly higher mass of Q
(1)
+ lowers its production cross section, but this is a

small effect. As expected from the structure of the parton distribution function, the G
(1)
µ

associated production cross sections drop off faster than others.

Q
(1)
+ U

(1)
− pair production, the main source of events containing both photons and

leptons, proceeds through G
(1)
µ and G

(1)
H exchange in the t-channel, as in figure 3 with one

of the Q
(1)
+ quarks replaced by U

(1)
− . Due to the partonic structure, the production with

first-generation quarks in the initial state is dominant, accounting for ∼ 50% of all Q
(1)
+ U

(1)
−

pairs produced for 1/R = 500 GeV.

As mentioned earlier, W
(1)
µ associated production, although small compared to that for

colored (1,0) particles, is not necessarily negligible because of its large branching fraction

into leptons. We have included the cross section for the channel with the largest production

rate, W
(1)+
µ Q

(1)
+ , in figure 10. The dominant contribution to this process is from production

with first generation (1,0) quarks. W
(1)−
µ associated production is even smaller, by an extra

factor of ∼3, due to the partonic structure of the proton.
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Figure 10: Tree-level production cross sections of (1,0) particles at the LHC: (a) quark pairs,

and (b) final states involving bosons. The cross sections have been summed over the first two

generations of KK quarks and antiquarks. The weak-doublet Q
(1)
+ includes both up- and down-type

(1,0) quarks. The cross section for U
(1)
+ D

(1)
+ production (not shown) turns out to be nearly equal

to that for U
(1)
+ U

(1)
+ . Cross sections for the weak-singlet quarks (6D chirality −) are almost the

same as those for weak-doublet quarks (6D chirality +) and are not plotted.

4.2 Events with leptons and photons at the LHC

Having determined the production rates of (1,0) particles, we now turn to a discussion of

their experimental signatures at the LHC. First we will consider the production of (1,0)

particles which give nℓ + mγ + /ET with n ≥ nmin and 0 ≤ m ≤ 2, where we do not count

leptons from the decay of the standard model particles.

We calculate the inclusive cross sections for the channels nℓ+ mγ + /ET with n ≥ nmin

and 0 ≤ m ≤ 2 in the following way. There are 11 level-1 particles with different branching

fractions to multiple leptons as discussed in section 3. We label these particles by A
(1)
i ,

where 1 ≤ i ≤ 11 is the particle type:

A
(1)
i =

(

W (1)
µ , G(1)

µ , G
(1)
H , T

(1)
+ , B

(1)
+ , T

(1)
− , U

(1)
− ,D

(1)
− , Q

(1)
+

)

. (4.1)

Their branching fractions, Br(i, a, a′), where a is the number of leptons (0 ≤ a ≤ 4) and

a′ is the number of photons (0 ≤ a′ ≤ 1), are given in section 3. Q
(1)
+ and U

(1)
− include

only the first two generations of weak doublets and up-type singlets. One should keep

in mind that the 3rd generation KK quarks and KK quarks of the first two generations

have different branching fractions to leptons so they need to be tackled separately. For

simplicity we use the same symbol here for quarks and antiquarks. The cross section for

nℓ + mγ + /ET events with n ≥ nmin and 0 ≤ m ≤ 2 is

σ(pp → nℓ + mγ + /ET , n ≥ nmin) =

11
∑

i=1

11
∑

j≥i

σ(pp → A
(1)
i A

(1)
j )Bij , (4.2)
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Figure 11: Sum over cross sections for (1,0) particle pair production at the LHC times the branch-

ing fractions of the cascade decays that give rise to n ≥ 3, 4, 5 or 6 charged leptons (ℓ = e± or µ±),

as a function of the compactification scale.

where Bij is a sum over products of branching fractions of the particles A
(1)
i and A

(1)
j

Bij =

4
∑

a,b=0
a+b≥nmin

1
∑

a′,b′=0
a′+b′=m

Br(i, a, a′)Br(j, b, b′) , (4.3)

Note that the total numbers of photons (m) and leptons (n) from the decay of a pair of

(1,0) particles are constrained by 0 ≤ n+2m ≤ 8. It is not possible to obtain 8ℓ+2γ + /ET

for instance, since the hypercharge gauge boson B
(1)
µ can decay into either a photon or a

fermion pair, together with B
(1)
H , so a photon is only produced at the expense of two leptons.

Most (1,0) particles have branching fractions that are independent of 1/R. However, those

for third generation quarks have variations due to threshold effects (see figure 2). We use

values at large 1/R, which slightly underestimates the total number of events as branching

fractions are larger at small 1/R. Since the contribution from the third generation is small,

our approximation gives rise to negligible error.

Cross sections for multi-lepton events at the LHC are shown in figure 11 as a function

of 1/R. Out of the total number of events with 5 leptons or more at 1/R = 500 GeV, the

majority arise from first- and second- generation weak doublet quarks, either in pairs or in

association with other particles; W
(1)
µ pair production is responsible for around 10%, as is

production including SU(3)c bosons, G
(1)
µ,H . As parton distribution functions vary with the

– 20 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
6

Figure 12: Cross sections for (a) mγ+nℓ+ /ET events with n ≥ nmin for m = 1, 2 and 1 ≤ nmin ≤ 4

and (b) Lepton + photon events with two or more same-sign leptons, at the LHC as a function of

1/R.

size of the extra dimensions, so will the individual contributions, although the sensitivity to

the mass scale 1/R is small. The results shown in Fig. 11 include tree-level processes only.

We estimate that next-to-leading order effects will increase the cross sections by ∼30-50%,

especially due to initial state radiation. A complete analysis of this effect is warranted, but

is beyond the scope of this paper.

Also interesting are combined photon and lepton events which result from 1-loop decays

of the (1) hypercharge gauge boson B
(1)
µ produced in the decay chain of U

(1)
− quarks (see

figure 12(a)). Down-type quarks have smaller hypercharge and so couple less strongly; while

quark doublets couple more strongly to weak bosons, resulting in a negligible branching

fraction into B
(1)
µ . In figure 13 we show typical diagrams for ℓ+ℓ+ℓ+ℓ−ℓ− and γℓ+ℓ−

signatures. The rate for events with unusual combinations of final states: two same-sign

leptons and a photon, γℓ+ℓ+ (γℓ−ℓ−) for instance, or three same-sign and one opposite

sign lepton, ℓ+ℓ+ℓ+ℓ− (ℓ−ℓ−ℓ−ℓ+), are plotted in figure 12(b). The latter process consists

of around 10% of the total rate for 4 lepton events, and the largest single contribution to it

is the decay of U
(1)
+ (D

(1)
+ ) pairs. It arises only rarely in the standard model from W+W+Z

(W−W−Z) production.

We expect that the small standard model backgrounds for these processes can be

eliminated by using a hard /ET cut in conjunction with a jet pT cut, since the jets originating

from the decay of (1,0) colored particles should have a transverse momentum of the order

of their mass differences (∼ 100 GeV). One might also naively worry about triggering issues

due to the softness of leptons, since the cascade decays giving rise to them occur between

particles that are relatively degenerate in mass. A preliminary analysis on a single leg of

the decay chain keeping exact spin correlations suggests that more than 90 % of lepton

pairs have enough pT to evade a 15 GeV cut, and that the leptons are far enough away in

∆R to be visible as individual tracks. Hence we do not anticipate any triggering problems,

although a detailed analysis of these issues using a detector simulator might be beneficial.
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Figure 13: Representative processes that lead to 5ℓ + /ET and γℓ+ℓ− + /ET events. Several other

production mechanisms as well as cascade decays contribute to these and related signals.

Figure 14: (a) Production cross sections at the Tevatron and (b) Cross sections for multilepton +

photon events, as a function of 1/R.

4.3 Cross sections at the Tevatron

At the Tevatron, the production from a qq̄ initial state, shown in figures 4, 7 and 9,

dominates. We summarize our results for (1,0) production cross sections, as well as multi-

lepton and lepton plus photon signatures in figure 14. The lower center-of-mass energy of

this collider slightly increases W
(1)
µ production cross sections as compared with the LHC.

This process now contributes 16% of the total number of events with 4 or more leptons for

1/R = 300 GeV.

We can use data gathered from Tevatron Run II to place rough constraints on the

radius of the extra dimensions. One potential channel that has been searched for in the

context of the minimal supersymmetric standard model is the trilepton signal [22, 23]. We

apply the results of this analysis, which found no excess over standard model background,

directly to our model. If we assume an efficiency of ∼ 5% [22, 23], we see that 1/R must

be larger than ∼ 270 GeV, otherwise we might have expected to observe at least 3 events.

Low statistics for this final state, both in expected and observed events, make the limit

rather less reliable than desired.
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A more precise, though less stringent, constraint can be obtained by using Run II

lepton + photon data [24], which contains larger numbers of expected and observed events.

The standard model prediction for the ℓγX channel for instance, is 150.6 ± 13 with an

observation of 163 events. Assuming that universal extra dimensions are responsible for

the small excesses in this and the ℓ+ℓ−γX channels allows us to obtain a limit on 1/R of

around 240 GeV at 95% C.L.

5. Conclusions

Despite the successful predictions of the 6DSM, the hadron collider phenomenology of

(1,0) KK modes has not been previously studied due to the large number of mechanisms

that contribute to production cross sections. Our inclusion in CalcHEP of the interactions

between (1,0) particles and standard model ones has allowed us to compute the cross

sections for (1,0) pair production at the LHC and the Tevatron. The large cross sections

(of almost 104 fb at the LHC, for masses around 500 GeV) shows that cascade decays with

small branching fractions may be observed, leading to a variety of discovery channels.

These are particularly interesting because of the presence in the 4D effective theory of a

spinless adjoint particle for each standard model gauge group. One-loop corrections to the

level-1 masses tend to make these spinless adjoints lighter than matter fields [12] (the same

result [30] applies to other models [31]), forcing them to undergo tree-level 3-body decays

and emitting two standard model fermions each time. This results in significant numbers

of events with five or more leptons.

Multi-lepton events are not unique to the 6DSM, although the rates at which they

occur in other theories are typically smaller. In its 5D counterpart for example, it is

necessary to produce level-2 KK particles to give rise to long enough cascades; the rate

for such processes is suppressed because the particles produced are heavier (m ∼ 2/R) [4].

Another theory leading to multi-lepton signatures involves a warped extra dimension with

custodial symmetry [25], but leptons in that case come from decays of W and Z, whose

branching fractions are small. In supersymmetric models, cascade decays of squarks such

as q̃′L → χ̃±
2 q → W±χ̃0

2q(χ̃
±
1 Zq) can also give multi-lepton signatures at the cost of small

production cross sections due to spin-statistics as well as a small branching fraction for

q̃′L → χ̃±
2 q.

Nevertheless, it should be rather straightforward to differentiate among these models

if a sufficiently large number of multi-lepton events will be observed at the LHC. The

6DSM has specific preditions for many observables. In this paper we analyzed the rates

for events with 3, 4, 5 and 6 leptons, as well as the relative rates for events with three

leptons of one charge and one lepton of opposite charge. Other observables, such as the

relative rates for events with different numbers of electrons and muons, may be analyzed

using the branching fractions for complete cascade decays (see the tables in section 3).

Another peculiarity of the 6DSM cascade decays is that they lead with reasonably large

branching fractions to events with photons. This is a consequence of the 2-body decay at

one loop of the hypercharge (1,0) vector boson, which competes successfully with its tree-

level 3-body decays. Events with leptons, photons and missing energy are also predicted
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in certain supersymmetric extensions of the standard model, but again, there are several

different channels, and we expect that if such events will be seen in large numbers, it will

be possible to differentiate between models.

One may wonder how robust our predictions are against variations in the mass spec-

trum, which may get contributions from operators localized at the fixed points of the

chiral square, as well as from higher-order QCD effects. In the case of a single universal

extra dimension, deviations from the one-loop corrected mass spectrum lead to a variety of

phenomenological implications [26]. Within the 6DSM, we expect that the rates for multi-

lepton events remain relatively large when the (1,0) mass spectrum is perturbed. This is

due to the large number of particles involved in a typical decay chain, with a standard

model quark or lepton being emitted at each stage. The total rates computed here are

sums over many such cascade decays of several (1,0) particles.

However, the events with photons depend entirely on the branching fractions of a single

particle, the hypercharge vector boson, and thus are less generic for different mass spectra.

A more general approach would be to lift the constraints on the mass spectrum. If

excess events with leptons, missing energy and possibly photons will be observed in certain

channels at the LHC, then the (1,0) masses would be determined by comparing a large

set of observed rates with the 6DSM predictions. One should also keep in mind that the

predictions of the 6DSM are not limited to collider signals. For example, an interesting

feature is that the LKP has spin 0, with various implications for dark matter [27].

Acknowledgments

We would like to thank Hsin-Chia Cheng, Konstantin Matchev and Eduardo Ponton for

helpful conversations. Fermilab is operated by Fermi Research Alliance, LLC under Con-

tract No. DE-AC02-07CH11359 with the United States Department of Energy.

A. Feynman rules for (1,0) modes

In this section we show Feynman rules that are relevant for QCD production of (1,0)

particles at hadron colliders. Corresponding vertices involving electroweak gauge bosons

can be easily inferred from those given below. The vector-like nature of KK fermions allows

for the usual QCD coupling to standard model gluons seen in the GµQ(1)Q(1) vertex below.

Ga
µ

Q
(1)
±

Q
(1)
±

= −igsγ
µT a

G
(1)a
µ

Q
(1)
±

Q
(0,0)
±

= −igsγ
µPL

R
T a
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The interaction of a level-1 quark and a level-1 gluon is chiral and so its vertex contains

projection operators, although the chirality of the incoming fermion is conserved.

G
(1)a
H

Q
(1)
±

Q
(0,0)
±

= −gsPL
R
T a

¡
¡ª

@
@I

p

q

Ga
µ

G
(1)b
H

G
(1)c
H

= gsf
abc

(

p − q
)µ

However, the interaction of a spinless adjoint G
(1,0)a
H with fermions changes the chirality

of the incoming fermion since G
(1,0)a
H is a scalar. Note that the Feynman rules for standard

model gluons are fixed by gauge invariance. The 3 and 4-point interactions involving only

(1,0) vector bosons and zero-mode gluons are identical to those in the standard model.

Gb
µ

Gd
ν

G
(1)c
H

G
(1)e
H

= −ig2
sg

µν(fabcfade + fabefadc)

Gb
ν

G
(1)a
µ

G
(1)c
ρ

= gsf
abc

[

(k − p)λgµν + (p − q)µgνρ + (q − k)νgµρ

]

¡
¡ª

@
@I-

k

q

p

Ga
µ

Gb
ν

G
(1)c
ρ

G
(1)d
σ

= −ig2
s

[

fabef cde(gµρgνσ−gµσgνρ)+facef bde(gµνgρσ−gµσgνρ)

+fadef bce(gµνgρσ−gµρgνσ)
]

B. One-loop 2-body decays of (1,0) bosons

We compute here the amplitude for the process B
(1)
ν → B

(1)
H γ, which proceeds through

one-loop diagrams with KK fermions running in the loop. The couplings of the B
(1)
ν and
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-
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-
p′
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Figure 15: Dimension-5 operator induced by fermion loops.

B
(1)
H bosons to the KK modes of a 6D chiral fermion F+ are given by

L ⊃ 1

4
g′YF+F

(j,k)
+

[

B(1)
ν γν

(

PL dj,k;j′,k′

00 − PR dj,k;j′,k′

10 r∗jkrj′,k′

)

− iB
(1)
H

(

PR dj,k;j′,k′

01 rj′,k′ − PL dj′,k′;j,k
03 r∗jk

)]

F j′,k′

+ . (B.1)

Here we have defined

dj,k;j′,k′

nn′ = (−1)nδk′,k

(

δj′,j−1 + (−1)n
′

δj′,j+1

)

+ (−1)nδj′,j

(

δk′,k+1 + (−1)n
′

δk′,k−1

)

+ in
′−nδj,1δk′,0δj′,k + in+2n′

δj′,1δk,0δk′,j , (B.2)

where rj,k are complex phases,

rj,k =
j + ik

√

j2 + k2
(B.3)

and YF is the hypercharge of the fermion, normalized to −1 for lepton doublets. In the

case of fermions with 6D chirality −, which contain right-handed zero modes, the same

formulas apply with the PL and PR chirality projection operators interchanged.

Dimension-5 operators coupling a (1,0) vector boson to a (1,0) spinless adjoint and

a standard model gauge boson are induced at one loop by the diagram in figure 15, with

fermion KK modes running in the loop. The contribution of a fermion F+ to the amplitude

for B
(1)
ν → B

(1)
H γµ is given by

M
(

B(1)
ν → B

(1)
H γµ

)

F+

= −1

4

(

g′
YF+

2

)2

eQF+ ε∗µ(p − p′) εν(p) I
µν(j,k;j′,k′)
F+

, (B.4)

where

I
µν(j,k;j′,k′)
F+

=

∫

d4l

(2π)4
Tr

mj,k;j′,k′

F [l/γµ+γµ(l/+p/−p′/)] (l/ + p/)−mj′,k′;j,k
F l/γµ(l/+p/−p′/)

(

l2 − M2
F (j,k)

) [

(l + p − p′)2 − M2
F (j,k)

] [

(l + p)2 − M2
F (j′,k′)

]γνγ5

(B.5)

and

mj,k;j′,k′

F = MF (j,k) Re
[

rjk

(

dj,k;j′,k′

00 dj′,k′;j,k
01 − dj′,k′;j,k

10 dj,k;j′,k′

01

)]

. (B.6)

After integrating over the loop momentum l, and summing over fermions, we find the

amplitude

M
(

B(1)
ν → B

(1)
H γµ

)

= −g′2e

8π2
ǫµναβ

ε∗µ(p − p′)εν(p)pαp′β
M2

B
(1)
ν

− M2

B
(1)
H

∑

F

σF

(

YF

2

)2

QF EF , (B.7)
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Figure 16: The diagrams for 3-body decay of (1,0) particles. A2 and A1 are heavy bosons of spin

0 or 1, F is a heavier fermion, and f is a much lighter fermion.

where σF = ±1 when F has 6D chirality ±, and

EF =
∑

j,k;j′,k′

mj,k;j′,k′

F Jj,k;j′,k′

F , (B.8)

with JF given by an integral over a Feynman parameter:

Jj,k;j′,k′

F =

∫ 1

0

dx

x
ln









1 +

x(1 − x)

(

M2

B
(1)
ν

− M2

B
(1)
H

)

(1 − x)M2
F (j,k) + xM2

F (j′,k′)
− x(1 − x)M2

B
(1)
ν









. (B.9)

The mj,k;j′,k′
quantities vanish unless the set of KK numbers (j, k; j′, k′) is given by

(1,0;1,1), (1,1;1,0) or (1,0; 0,0). This is a consequence of the vectorlike nature of the

fermion higher KK modes. Therefore,

EF = MF (1,0)

(

2J1,0;0,0
F + J1,0;1,1

F

)

+
√

2MF (1,1)J
1,1;1,0
F . (B.10)

Note that EF depends only on the (1,0) masses and on the masses of the (0,0) and (1,1)

fermions. The mass corrections for (1,1) fermions,
{

Q3
+, T−, Q1,2

+ , U1,2
− ,D1,2,3

− , L+ and E−

}

,

are given by
√

2/R multiplied by the coefficients {1.33, 1.31, 1.31, 1.27, 1.26, 1.05, 1.02} re-

spectively [5], ignoring electroweak symmetry breaking effects. Note also that in the limit

that all the fermions at each KK level are degenerate, EF becomes independent of F and so

can be taken out of the sum in Equation B.7, which then vanishes identically by anomaly

cancellation. This completes the computation of the amplitude for B
(1)
ν → B

(1)
H γ, which

determines the coefficient of the dimension-5 operator shown in eq. (2.11), and the decay

width of B
(1)
ν shown in eq. (3.5).

C. Tree-level 3-body decays of (1,0) bosons

In this appendix we compute the width for 3-body decays of (1,0) bosons. Let us consider

a generic 3-body decay of a boson A2 of mass M2 into a boson A1 of mass M1 and a

fermion-antifermion pair f f̄ , via an off-shell fermion F , of mass MF > M2 > M1. There

are two tree-level diagrams contributing to the process A2 → (F ∗f) → A1f f̄ , as shown in
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figure 16. For simplicity, we assume that the final-state fermions are massless. The decay

width is given by

Γ(A2 → A1f f̄) =
1

64π3M2

∫ µ◦

0
dEf

∫ Emax
f̄

µ◦−Ef

dEf̄ |M|2 , (C.1)

where M is the matrix element, Ef and Ef̄ are the energies of the final-state fermions in

the rest frame of A2, and we defined

µ◦ ≡
M2

2 − M2
1

2M2
. (C.2)

For a fixed Ef , the maximum value of Ef̄ is

Emax
f̄

=
µ◦ − Ef

1 − 2Ef/M2
. (C.3)

Let us first consider the case where both A1 and A2 have spin 0 (we label them by

A1H and A2H in that case) and have pseudo-scalars couplings to the fermions:

(g1A1H + g2A2H) iFLfR + H.c. , (C.4)

where g1,2 are real dimensionless couplings. The matrix element squared, summed over the

spins of f and f̄ , is given by

|M|2
(

A2H → fRf̄RA1H

)

= 2 (g1g2)
2
[

2(Pf · P1)(Pf · P1) − M2
2 (Pf · Pf̄ )

]

∆2 , (C.5)

where P1, Pf and Pf̄ are the 4-momenta of A1H , f and f̄ , respectively. The quantity

∆ =
1

(P1 + Pf )2 − M2
F

− 1

(P1 + Pf̄ )2 − M2
F

, (C.6)

accounts for the propagators of the off-shell fermion in the two diagrams of figure 16.

The two diagrams have opposite sign, resulting in the sign between the two terms in ∆,

because of the different momentum flow through the intermediate fermion line. In the

center-of-mass frame, the width becomes

Γ(A2H → A1HfRf̄R) =
(g1g2)

2

128π3
M2 I+(M2,M1,MF ) (C.7)

where we defined

I±(M2,M1,MF ) =

∫ µ◦

0
dEf

∫ Emax
f̄

µ◦−Ef

dEf̄

2EfEf̄ ± M2

(

µ◦ − Ef − Ef̄

)

M2
2 (µ⋆ + Ef )2(µ⋆ + Ef̄ )2

(

Ef − Ef̄

)2
.

(C.8)

The function I− is introduced for later convenience, µ◦ and Emax
f̄

are given in eqs. (C.2)

and (C.3), respectively, and

µ⋆ ≡ M2
F − M2

2

2M2
. (C.9)
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Let us now study the case where A2 has spin 1 (we label it by A2µ in that case) and

couples to one chirality of the fermions:

g2A2µFRγµfR + H.c. . (C.10)

The matrix element squared, averaged over the polarizations of A2µ and summed over the

spins of f and f̄ , is given by

|M|2
(

A2µ → fRf̄RA1H

)

=
2

3
(g1g2)

2

(

MF

M2

)2
[

2(Pf ·P2)(Pf̄ ·P2)+M2
2 Pf ·Pf̄

]

∆2 , (C.11)

where P2 is the 4-momentum of A2H . Again, the two diagrams have opposite signs, result-

ing in the form of ∆ given in eq. (C.6). However, the sign difference in this case is due to

the pseudo-scalar coupling. The width in the center-of-mass frame is given by

Γ(A2µ → A1HfRf̄R) =
(g1g2)

2

384π3

M2
F

M2
I−(M2,M1,MF ) , (C.12)

where I− is the phase-space integral shown in eq. (C.8).

The only other case relevant for the decays of the (1,0) particles discussed in section 3

is that where A2 has spin 0 and pseudo-scalar couplings [see eq. (C.4)], while A1 has spin

1 and a coupling

g1A1µFRγµfR + H.c. . (C.13)

The matrix element squared, summed over the polarizations of A1µ and the spins of f and

f̄ , is given in this case by

|M|2
(

A2H → fRf̄RA1µ

)

= 2 (g1g2)
2

(

MF

M1

)2 [

2(Pf ·P1)(Pf̄ ·P1) + M2
2 Pf ·Pf̄

]

∆2 , (C.14)

where ∆ is defined in eq. (C.6). The width in the center-of-mass frame is given by

Γ(A2H → A1µIRf̄R) =
(g1g2)

2

128π3
M2

M2
F

M2
1

[(

1 − 2µ◦

M2

)

I−(M2,M1,MF ) (C.15)

+
2µ◦

M2
I+(M2,M1,MF )

]

.

If the heavy particles are approximately degenerate, which is the case for the (1,0)

particles studied in this paper, then µ◦ ≪ M2 and µ⋆ ≪ M2 (which implies µ◦ ≈ M2 −M1

and µ⋆ ≈ MF −M2), and the double integrals of eq. (C.8) may be performed analytically:

I+(M2,M1,MF ) =
−8

M3
2

[

µ⋆
µ◦ + µ⋆

µ◦ + 2µ⋆

(

µ2
◦ + 5µ◦µ⋆ + 5µ2

⋆

)

ln

(

1 +
µ◦

µ⋆

)

(C.16)

− µ◦

12

(

µ2
◦ + 30µ◦µ⋆ + 30µ2

⋆

)

] [

1 + O

(

µ◦

M2
,

µ⋆

M2

)]

.

A simple relation between the I± functions holds at leading order in 1/M2:

I− = 3I+

[

1 + O

(

µ◦

M2
,

µ⋆

M2

)]

. (C.17)
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It is also useful to note that for µ◦ ≪ M2 and µ◦ ≪ µ⋆,

I+(M2,M1,MF ) =
µ7
◦

105M3
2 µ4

⋆

[

1 − 2
µ◦

µ⋆

+
µ◦

M2
+ O

(

µ2
◦

µ2
⋆

,
µ2
◦

M2
2

)]

,

I−(M2,M1,MF ) =
µ7
◦

35M3
2 µ4

⋆

[

1 − 2
µ◦

µ⋆
+

5µ◦

3M2
+ O

(

µ2
◦

µ2
⋆

,
µ2
◦

M2
2

)]

. (C.18)

This very strong dependence on µ◦ ≈ M2 − M1 is somewhat surprising. The phase-space

integrals of eq. (C.8) give three powers of µ◦, and the matrix element squared appears

at first sight to give only one more power of µ◦. However, the relative sign of the two

diagrams forces a cancellation of the leading term within ∆ [see eq. (C.6)], so that ∆2 gives

the
(

Ef − Ef̄

)2
factor in eq. (C.8), which accounts for two more powers of µ◦. Furthermore,

the integration over Ef̄ cancels the leading term in the µ◦ expansion of the numerator of

I±. The resulting dependence on the 7th power of µ◦ implies that the decay width is

extremely suppressed, if A2 and A1 are more degenerate than the F − A2 pair.

The decay widths given in eqs. (C.7) and (C.15) are used in section 3 for computing the

branching fractions of the spinless adjoints, while the decay width of eqs. (C.12) determines

the branching fractions of the (1,0) hypercharge vector boson.
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